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We investigate statistics of occupation times for an over-damped Brownian particle
in an external force field, using a backward Fokker–Planck equation introduced by
Majumdar and Comtet. For an arbitrary potential field the distribution of occupation
times is expressed in terms of solutions of the corresponding first passage time problem.
This general relationship between occupation times and first passage times, is valid for
normal Markovian diffusion and for non-Markovian sub-diffusion, the latter modeled
using the fractional Fokker–Planck equation. For binding potential fields we find in the
long time limit ergodic behavior for normal diffusion, while for the fractional framework
weak ergodicity breaking is found, in agreement with previous results of Bel and Barkai
on the continuous time random walk on a lattice. For non-binding cases, rich physical
behaviors are obtained, and classification of occupation time statistics is made possible
according to whether or not the underlying random walk is recurrent and the averaged
first return time to the origin is finite. Our work establishes a link between fractional
calculus and ergodicity breaking.

KEY WORDS: Weak ergodicity breaking, Fractional calculus, Backward Fokker–
Planck equation, Occupation times.

1. INTRODUCTION

Consider the trajectory of a single Brownian particle. The total time the particle
spends in a given domain is called the residence time or the occupation time. A
well known example is P. Lévy’s arcsine law.(1,2) Consider a Brownian motion
ẋ(t) = η(t) where η(t) is Gaussian white noise with zero mean. Lévy investigated
the residence time of the particle in the domain x > 0, which we call T +, when
the motion is unbounded and the total observation time is t . Naive expectation
is that T +/t = 1/2 with small fluctuations when t → ∞, namely the particle

1 Department of Physics, Bar Ilan University, Ramat-Gan 52900, Israel; e-mail: barkaie@mail.biu.ac.il

883

0022-4715/06/0500-0883/0 C© 2006 Springer Science+Business Media, Inc.



884 Barkai

occupies the domain x > 0 for half of the time of observation. However, instead
the probability density function of T +/t is given by the well known arcsine
law, f (T +/t) = [π

√
(T +/t)(1 − T +/t)]−1 with 0 ≤ T +/t ≤ 1. This probability

density has a U shape, which means that for a typical realization of the Brownian
trajectory, the particle spends most of the time in one half of space (say x > 0)
and not in the other (x < 0).

Many extensions of this well known result are found in the literature. Darling
and Kac(3,4) found the limiting distribution of the time spent in a domain in two
dimensions, and this line of investigation was extended to three dimension by
Berezhkovskii et al.(5) Lamperti’s(6) limit theorem gives a very general mathemat-
ical foundation for occupation time statistics (see more details in the manuscript).
Recently in Ref. 7 Pearson’s type of ballistic motion with random reorientation was
considered, instead of the usual assumption of an underlying continuum process.
The basic mathematical theory for the calculation of occupation time statistics for
Brownian motion was developed by Kac, and is usually based on the Feynmann–
Kac formula (see Refs. 1, 8 and reference therein). Statistics of occupation times
is of-course not limited to Brownian motion and diffusion, and it is a topic of
wide investigation,(1) for example in the context of renewal processes,(9) theory
and experiments of blinking quantum dots,(10,11,12) weak ergodicity breaking of
dynamics generated using deterministic maps,(13) and work distribution functions
of a single spin.(14)

The problem of occupation times of a Brownian particle in the presence of
external field was considered recently, by Majumdar and Comtet.(15) Using the Kac
formalism(1,16) they found a backward Fokker–Planck equation whose solution
yields statistics of occupation times. In Refs. 15, 16 the problem of occupation
time statistics of a particle performing a random walk in a random walk like
potential, i.e. the Sinai model was investigated. It was shown that statistics of
occupation times are drastically changed when averages over random disorder are
made.

In the first part of this manuscript we consider the problem of occupation
times for normal Brownian motion in an external field using the backward Fokker–
Planck equation.(15) For an arbitrary potential field the distribution of occupation
times is expressed in terms of solutions of the corresponding first passage time
problem. This solution gives a general relation between the distribution of oc-
cupation times and the corresponding first passage time problem. Besides the
theoretical interest in such a relation, the solution is used to classify very general
behaviors of occupation times based on the corresponding properties of the first
passage times. The later are investigated in great detail in the literature,(2) and
we can use this knowledge to solve analytically the problem of occupation times
at-least for some simple cases. For example we show that in the limit of long
measurement times, and for binding force fields, statistics of occupation times is
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determined by Boltzmann’s statistics, namely the underlying dynamics is ergodic,
as expected.

Statistics of occupation times is important from a fundamental point of view,
since if we are able to calculate statistics of occupation times from some underlying
dynamics, one can check the validity of the ergodic hypothesis and its possible
extensions. A trivial example is Gaussian Brownian motion in a system of finite
size 0 < x < L , in the absence of external force fields. Then it is easy to show that
the residence time in half of the system i.e. in the domain (0, L/2), is in statistical
sense half of the observation time, when the observation time is long, as expected.
For dynamics described by fractional kinetic equations,(17,18) we show that such a
simple ergodic picture does not hold.

In the second part of the paper we consider the problem of a particle un-
dergoing an anomalous diffusion process.(19) We model this behavior using the
fractional time Fokker–Planck equation.(20,21) This fractional framework is based
on fractional calculus e.g. d1/2/dt1/2, which is briefly introduced in the manuscript.
We show for example, that the general relation between occupation times and first
passage times we find in the first part of the paper is still valid, even for the non-
Markovian sub-diffusive case. Similar to normal diffusion case a classification of
typical behaviors of occupation times is found, and analytical solutions provided.
For dynamics in binding force fields we find weak ergodicity breaking. In the
conclusions we compare our results on occupation times found here using the
fractional framework, and recent results of Bel and Barkai(22,23) on statistics of
residence times for the continuous time random walk.

For applications, residence times are of interest in the context of chemi-
cal reactions(24,25,26) and rather generally for statistical analysis of experimen-
tal data. Residence times are very important in the context of single molecule
dynamics.(27,28,29) It is now possible to follow dynamics of single molecules em-
bedded in condensed phase environments, using optical techniques. For example
dynamics of single molecules in cells or in solution are used to follow chemical
reactions in real time, without the problem of ensemble averaging found in usual
measurements. A typical experiment uses a laser to investigate the dynamics of a
particle. In many cases and under certain conditions(28) if a particle or a reaction
coordinate is in a finite domain, the system may emit photons, while when the
particle is out of the domain the system does not emit. Very briefly, the domain
width can be imagined as the width of the laser beam in single molecule fluo-
rescence experiments when the particle comes in and out of resonance with the
exciting laser field, due to its diffusion in space,(30) or it could be the Förster radius
in fluorescence resonance energy transfer measurement.(31,32) Thus the total time
the photons are emitted is approximately the residence time, which is proportional
to the number of emitted photons, which is generally a random variable. For other
sources of fluctuations in single molecule experiments see Ref. 28.
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2. NORMAL DIFFUSION

Consider a one dimensional over-damped Brownian motion in an external
force field F(x). The Smoluchowski Fokker–Planck equation for the concentration
of non interacting particles is

∂c(x, t)

∂t
= D

[
∂2

∂x2
− ∂

∂x

F(x)

kbT

]
c(x, t), (1)

where T is the temperature and D is the diffusion coefficient. As well known the
equilibrium of the ensemble of particles is the Boltzmann equilibrium, provided
that the force field is binding.

Consider a single particle, which at time t = 0 is on x0, the observation
time of the stochastic dynamics is t . The random variable we investigate here is
T +, the total time the particle occupies the region x > 0. In principle during the
observation time the particle may cross the point x = 0 many times, and then the
occupation time T + is composed of many sojourn times in x > 0.

Let Px0,t (T
+) be the probability density function (PDF) of T +. The double

Laplace transform

Px0,s (u) =
∫ ∞

0

∫ ∞

0
e−st e−uT +

Px0,t (T
+)dt dT +, (2)

is defined so that s and t and u and T + are Laplace pairs. Majumdar and
Comtet(15,16) found the equation of motion for Px0,t (T

+) in double Laplace space

D

[
∂2

∂x2
0

+ F (x0)

kbT

∂

∂x0

]
Px0,s (u) − [s + � (x0) u] Px0,s (u) = −1. (3)

Where �(x0) is the step function: �(x0) = 1 if x0 > 0 otherwise it is zero. This
type of equation is called a backward Fokker–Planck equation, the operator on
the left hand side depends on the initial condition x0. Eq. (3) is solved for the
matching boundary conditions

Px0,s(u)|x0=0+ = Px0,s(u)|x0=0− ,

∂ Px0,s(u)

∂x0
|x0=0+ = ∂ Px0,s(u)

∂x0
|x0=0− . (4)

We will re-derive Eq. (3) later as a special limiting case of a more general non-
Markovian dynamics.

To prepare for the solution of Eq. (3) we define the following survival prob-
abilities. The probability that a particle starting at x0 with x0 < 0, to remain in
the domain x < 0 without leaving it even once, during the time t is the survival
probability W −

x0
(t). Let W −

x0
(s) be the Laplace transform of W −

x0
(t) and similarly

the Laplace transform of the survival probability in the domain x > 0 is W +
x0

(s) for
x0 > 0. The key to the solution of the problem of occupation times in half space, is



Residence Time Statistics for Normal and Fractional Diffusion in a Force Field 887

to recall the equation for the survival probability of a particle in half space(33,34,35)

∂W −
x0

(t)

∂t
= D

[
∂2

∂x2
+ F (x)

kB T

∂

∂x

]
W −

x0
(t) . (5)

Or in Laplace t → s space

D

[
∂2

∂x2
0

+ F (x0)

kB T

∂

∂x0

]
W −

x0
(s) − sW −

x0
(s) = −1 x0 < 0, (6)

and a similar equation holds for x0 > 0. The boundary conditions for Eq. (6) are
the standard conditions used for the calculation of survival probabilities. Namely,
W −

x0
(s)|x0=0 = 0, means that the particle reaches the boundary on x = 0 instanta-

neously if the particle starts very close to the absorbing boundary and if x0 → −∞
survival is unity. Initially at time t = 0 the survival probability is unity.

The solution of the Majumdar Comtet Eq. (3) for the PDF of the occupation
time in Laplace space is

Px0,s (u) = W −
x0

(s) + [
1 − sW −

x0
(s)

]
Gs(u)

if x0 < 0,

Px0,s (u) = W +
x0

(s + u) + [
1 − (s + u)W +

x0
(s + u)

]
Gs(u) (7)

if x0 > 0. From Eq. (7) the physical meaning of Gs(u) becomes clear, it is
the double Laplace transform of Gt (T +) the PDF of the random variable T +

for a particle starting on x0 = 0. The PDF Gt (T +) contains the information
on the problem of occupation times, while the survival probability was inves-
tigated previously by many authors, hence in what follows we investigate Gt (T +).
Using Eq. (6) the reader can verify that Eq. (7) is indeed the general solu-
tion of the problem of occupation times Eq. (3). Using the boundary condition
W −

x0=0(s) = W +
x0=0(s) = 0 and the solution Eq. (7) it is easy to see that the boundary

condition Px0,s(u)|x0=0+ = Px0,s(u)|x0=0− = Gs(u) in Eq. (4) is satisfied.
The second matching boundary condition in Eq. (4), on the derivatives of

Px0,s(u) yields Gs(u) using Eq. (7)

Gs(u) = J+(s + u) − J−(s)

(s + u)J+(s + u) − s J−(s)
(8)

where the currents are

J+(s + u) = ∂W +
x0

(s + u)

∂x0
|x0=0+ , J−(s) = ∂W −

x0
(s)

∂x0
|x0=0− . (9)

Eqs. (7, 8, 9) are the main results so far since they yield a general relation between
statistics of occupation times and survival probability currents. From Eq. (9) we
see that the solution of the problem of occupation times is found in terms of two
solutions of the corresponding first passage time problems, the first for a particle
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starting on x0 > 0 and absorbed on x = 0 (i.e. J+) and the second for a particle
starting on x0 < 0 and absorbed on x = 0 (i.e. J−). Thus the problem of residence
times is solved in three steps:

(i) Find solutions of two first passage time problems for, x0 > 0 and x0 < 0
in Laplace space.

(ii) Use Eq. (8) to find the solution of the problem of residence times in double
Laplace space.

(iii) And then use a two dimensional inverse Laplace transform to get Gt (T +)
from Gs(u).

Since there exists a vast literature on the solutions of the problem of first passage
time,(2) the relationship Eq. (8) is very useful for the calculation of statistics of
occupation times. We note that some connections between first passage times
and occupation times, which are different and in our opinion less general than
Eq. (9), appeared previously in the literature.(5,8,23) Finally, while we considered
the occupation time in half space, occupation times in a finite domain are also
obtained in a similar way, and it is straight forward to extend our results to higher
dimensions.

Majumdar and Comtet(15) classify statistics of occupation times according
to the behavior of the potential field, in particular they consider motion in stable,
unstable and flat potential fields. Here the relation between survival currents and
statistics of occupations times, Eq. (8) can be used to characterized certain very
general and new behaviors of occupation times.

Survival probabilities in a finite and infinite domain exhibit three well known
typical physical behaviors,(2) we consider the right random walk (i.e. x0 > 0)
and similar classification holds for the left random walk. Later we will classify
behaviors of residence times based on these three behaviors of first passage times.

Case 1. The random walk is recurrent, and the average first passage time
from x0 to 0 is finite. Such cases correspond to diffusion in a system of finite size,
when the particle cannot escape to infinity, e.g. the driving force field is binding.

Case 2. The random walk is transient, i.e. the survival probability in x > 0 is
finite in the limit of long times. Such cases happen when the external force drives
the particle far from the origin, and the system is infinite. In that case in the limit
of small s

W +
x0

(s) ∼ ε+
x0

s
(10)

where ε+
x0

is the survival probability of the particle starting on x0, without reaching
x = 0, when t → ∞. Similar notation is used for the left random walk, with ε−

x0
.
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Case 3. Random walks are recurrent, though the average first passage time is
infinite. A particularly common situation is the case when the survival probability
decays like t−1/2 for long times. This happens if the non-diverging external field
F(x) = 0 for x > |xc| and the system is infinite, namely when diffusion controls
the long time dynamics. For such a case(2)

W +
x0

(s) ∼ A+
x0

s1/2
, s → 0, (11)

where A+
x0

> 0 depends of-course on the details of the force field.
We now consider certain general properties of the statistics of occupation

times for the three cases.

Case 1. The long time behavior of Gt (T +) is now investigated. We consider
a case when both the left and the right random walks, starting at x0 < 0 or x0 > 0,
respectively, are recurrent and the corresponding average first passage times are
finite. For this case the small s limit yields

W ±
x0

(s = 0) = 〈t±
x0

〉, (12)

where 〈t±
x0

〉 is the average time for the particle starting on x0 < 0 (or x0 > 0) to
reach the origin for the first time. The small s and u limit, their ratio arbitrary, of
Eq. (8) gives the long t and T + behavior of Gt (T +), we find

Gs(u) ∼ 1

s + u
∂〈t+x0

〉
∂x0

|x0=0

∂〈t+x0
〉

∂x0
|x0=0−

∂〈t−x0
〉

∂x0
|x0=0

. (13)

The differential equation for 〈t+
x0

〉 is well known(33) and is obtained from the small
s expansion of Eq. (6)

D

[
∂2

∂x2
0

〈t+
x0

〉 + F(x0)

kB T

∂

∂x0
〈t+

x0
〉
]

= −1. (14)

Solving this equation, using a similar equation for 〈t−
x0

〉, and inverting Eq. (13) to
the time domain we find the expected ergodic behavior

Gt (T
+) ∼ δ

(
T + − P+

B t
)
, (15)

where P+
B is Boltzmann’s probability of occupying x > 0

P+
B =

∫ ∞
0 e− U (x)

kB T dx

Z
, (16)

Z = ∫ ∞
−∞ exp −U (x)

kB T dx is the normalizing partition function and U (x) is the bind-
ing potential, with F(x) = −dU (x)/dx .
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Case 2. We consider the case where both the left and the right random walks
are non recurrent. The survival probabilities in the two domains are ε+

x0
and ε−

x0
, in

the long time limit. Then using Eqs. (8, 10) we find for t → ∞
Gt (T

+) ∼ α−δ(T +) + α+δ(T + − t) (17)

where

α+ =
∂ε+

x0
∂x0

|x0=0

∂ε+
x0

∂x0
|x0=0 − ∂ε−

x0
∂x0

|x0=0

(18)

and α− = 1 − α+. Since the particle always manages to escape either to the left
or to the right, eventually the particle will either reside in the left domain or the
right domain forever, hence the delta functions in Eq. (17). The weights of these
delta functions are given by the derivatives of the survival probabilities only.

Case 3. We now consider a case where both the left and the right random
walks are recurrent, though the average first return time from x0 to x = 0 is infinite,
in such a way that Eq. (11) is valid. Then in the small s and u limit

Gs(u) ∼ s−1/2 + R(s + u)−1/2

s1/2 + R(s + u)1/2
(19)

where the asymmetry parameter is

R = −
∂ A+

x0
∂x0

|x0=0

∂ A−
x0

∂x0
|x0=0

. (20)

Transforming to the time domain we find the asymmetric arcsine PDF(6)

Gt (T
+) ∼ 1

t
f

(
T +

t

)
(21)

where

f (x) = 1

π

R
x1/2 (1 − x)1/2 [

R2 (1 − x) + x
] . (22)

When R = 1 we find the arcsine law. Note that the PDF Eq. (21) diverges on
T +/t = 1 and T +/t = 0, hence events where the particle always occupies (or
hardly never occupies) the domain x > 0 have a significant contribution.

Another general result obtained from the small u expansion of Eq. (8) is for
the average occupation time

〈T +〉 = L−1
s→t

{
J+(s)

s2 [J+(s) − J−(s)]

}
(23)
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where L−1
s→t is the inverse Laplace transform. If the potential field is binding and

the random walk is recurrent, then 〈T +〉 ∼ P+
B t . Similar relations between higher

order moments of the occupation times and the survival probabilities are obtained
in a similar way. In Section 4 we consider several particular examples, which
explain in greater detail the meaning of the general results obtained in this section.
First we generalize our results for fractional dynamics.

3. ANOMALOUS DIFFUSION

Anomalous diffusion and relaxation is modeled in this section based on the
fractional time Fokker–Planck equation (FFPE),(20,21) the concentration of non-
interacting particles obeys

∂αc(x, t)

∂tα
= Dα

[
∂2

∂x2
− ∂

∂x

F(x)

kbT

]
c(x, t), (24)

where Dα is a generalized diffusion coefficient and 0 < α < 1. A brief mathemati-
cal introduction to the FFPE is given in Appendix A. We recall physical properties
of the FFPE. (i) when F(x) = 0 and for free boundary conditions we have the
fractional diffusion equation(36,37,38,39,40) with anomalous diffusion 〈x2〉 ∝ tα . (ii)
In the presence of a binding time independent force field the equilibrium is the
Boltzmann distribution.(20,21) (iii) Generalized Einstein relations are satisfied in
consistency with linear response theory.(20,21) (iv) Relaxation of modes follows
the Mittag Leffler decay, related for example to Cole-Cole relaxation.(20,21) (v) In
the limit α → 1 we recover the standard Smoluchowski Fokker–Planck equation.
The FFPE is derived from the continuous time random walk.(21) Its mathematical
foundation is P. Lévy’s generalized central limit theorem applied to the number of
steps in the underlying random walk.(41,42) A very general solution of the FFPE
in terms of the solution of the standard α = 1 Fokker–Planck equation was given
in Ref. 41 (i.e., subordination, and the inverse Lévy transform). Recently there is
some controversy on how to apply boundary conditions(43,44,45) for the anomalous
case. Applications of fractional diffusion modeling include: Scher-Montroll time
of flight transport of charge carriers in disordered medium,(41) dynamics of ion
channels,(46) relaxation processes in proteins,(47) dielectric relaxation,(48) diffusion
of DNA through a nano-pore,(49) and deterministic chaotic diffusion.(38,50,51) For
a review and a popular article on fractional kinetics.(17,18)

Similar to the normal diffusion case, we define Px0,t (T
+) as the PDF of the

residence time T + in half space x > 0, and Px0,s(u) its double Laplace transform.
As we show in the next subsection the differential equation for Px0,s(u) for the
dynamics described by the FFPE Eq. (24) is

Dα

[
∂2

∂x2
0

+ F (x0)

kbT

∂

∂x0

]
Px0,s (u) − [s + � (x0) u]α Px0,s (u)

= − [s + � (x0) u]α−1 . (25)
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When α = 1 we recover the Majumdar Comtet Eq. (3). The boundary conditions
for Eq. (25) are identical to the normal diffusion case α = 1 given in Eq. (4). Eq.
(25) is important since as pointed out in Ref. 22, fractional dynamics is weakly
non-ergodic,(52) namely occupation time statistics is not described by Boltzmann
equilibrium even in the limit of long time and for binding potential fields. Thus the
FFPE (24) cannot be used to describe time averages of physical observable due to
ergodicity breaking, and the interpretation of results derived from the FFPE must
be treated with care. Eq. (25) is a remedy for this problem since as we will show
it yields a fractional framework for the calculation of non-trivial distribution of
occupation times (i.e. generalization of Boltzmann’s statistics Eq. (15)). Eq. (25) is
a fractional backward Fokker–Planck equation in double Laplace space, formally
one may invert it to the time domain using material fractional derivatives,(53)

however in practice we solve this equation in double Laplace space and only then
make the inverse double Laplace transform.

Interestingly the solution of the fractional Eq. (25) is identical to that found
for normal diffusion case, namely our main results Eqs. (7, 8, 9) are valid also
in the non-Markovian domain 0 < α < 1. Now W ±

x0
(s) needed for the calculation

of J±(s), is the Laplace transform of the survival probability for the fractional
particle. Thus Eqs. (7, 8, 9) have some general validity beyond normal Markovian
diffusion.

To prove that Eqs. (7, 8, 9) are still valid we must first find the differential
equation for W +

x0
(s): the survival probability of a fractional particle starting on

x0 > 0 in the domain x > 0. We can prove that

Dα

[
∂2

∂x2
0

+ F (x0)

kB T

∂

∂x0

]
W +

x0
(s) − sαW +

x0
(s) = −sα−1, (26)

and a similar equation holds for x0 < 0. Eq. (26) is the fractional generalization of
well known backward equation for the survival probability Eq. (6). The derivation
of Eq. (26) is based on results obtained in Ref. 41 and is simple once the sub-
ordination trick is used (see some details in Appendix A). Now using Eq. (26) it
is easy to verify that Eqs. (7, 8, 9) are solutions of the fractional Eq. (25).

3.1. Derivation of Fractional Equation for Occupation Times

In this subsection we derive our main result Eq. (25) using the assumption that
the underlying dynamics is described by the fractional Fokker–Planck equation
(24). The latter describes long time behavior of the continuous time random walk
(CTRW), which is the underlying random walk process we have in mind. In the
CTRW under investigation a particle performs a one dimensional random walk
on a lattice, with jumps to nearest neighbors only and with random waiting times
between jumps. In the CTRW the waiting times between jumps are independent
identically distributed random variables, namely the CTRW process is renewed
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after each jump. The PDF of waiting times is ψ(t). Two classes of CTRWs are
usually considered, the case when the average waiting time is finite, and the case
when ψ(t) ∝ t−(1+α) when t → ∞ and 0 < α < 1. The latter case leads to a non-
stationary behavior, aging, anomalous diffusion and weak ergodicity breaking.(52)

The lattice spacing is ε, eventually we will consider the continuum limit when
ε is small. On each lattice point we assign a probability for jumping left and
a probability of jumping right. This dynamics in the continuum limit leads to
behavior described by the FFPE, when detailed balance conditions are applied
on the probabilities for jumping left or right(21) (i.e. probabilities to jump left or
right are related to external force field and temperature). In what follows we start
with some general arguments, assuming only a renewal property of the random
walk, without limiting our selves to a specific model. Note that for simplicity we
assume jumps to nearest neighbors only, the dynamics we consider can change
dramatically if one assumes that distribution of jump lengths is also described by
power law statistics.

The random position of the particle is x(t). The total time the particle spends
on x ≥ 0 is T +, i.e. the occupation time of half space. The particle starts on x0 and
assume that x0 ≥ 0, later we generalize our results to the case x0 < 0. We define
the PDF of first passage times, from x0 to x = −ε, as ψ+

x0
(t). The PDF of first

passage times from x = 0 to x = −ε (x = −ε to x = 0) is denoted with ψ+(t)
and [ψ−(t)] respectively.

We assume that the first passage times PDFs ψ+(t) and ψ−(t) do not de-
pend on x0 and that sojourn times in domain x > 0 and x < 0 are statistically
independent. Such assumption holds for Markovian dynamics but is not obvious
otherwise. For CTRW dynamics the assumption is correct, since as mentioned the
CTRW processes is a renewal process. The process is mapped on a random two
state process

θx (t) =
{

1 if x(t) ≥ 0
0 if x(t) < 0

(27)

and hence T + = ∫ t
0 θx (t)dt . Since either the particle is in the domain x < 0 or not

the dynamics is described by a set of sojourn times

τx0 , τ
−
1 , τ+

2 , τ−
3 , τ+

4 , . . . .

Here the PDF of τx0 is ψx0 (t), the PDF of τ−
1 is ψ−(t), the PDF of τ+

2 is ψ+(t),
etc. All the sojourn times are assumed mutually independent, which means the
process is renewed once the particle jumps from x = 0 to x = −ε or vice versa.

Let fx0,t (T
+) be the PDF of T + when the total observation time is t . Let

fx0,s(u) be the double Laplace transform of fx0,t (T
+). A calculation, using methods
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of renewal theory, similar to the work of Godreche and Luck(9) yields

fx0,s(u) = 1 − ψ+
x0

(s + u)

s + u
+ ψ+

x0
(s + u)

[
ψ−(s)

1 − ψ+(s + u)

s + u
+ 1 − ψ−(s)

s

]

× 1

1 − ψ+(s + u)ψ−(s)
. (28)

Where ψ+
x0

(s + u) = ∫ t
0 exp[−(s + u)t]ψ+

x0
(t)dt is the Laplace transform. If

ψ+
x0

(t) = ψ+(t) = ψ−(t) we recover a result in Ref. 9. If the particle starts on
x0 < 0 then one can show

fx0,s(u) = 1 − ψ−
x0

(s)

s
+ ψ−

x0
(s)

[
ψ+(s + u)

1 − ψ−(s)

s
+ 1 − ψ+(s + u)

s + u

]

× 1

1 − ψ+(s + u)ψ−(s)
. (29)

We now consider the case when the underlying dynamics is described by the
FFPE. By definition the first passage time PDFs are related to survival probabilities
according to

W +
x0

(t) = 1 −
∫ t

0
ψ+

x0
(t)dt, (30)

or using the convolution theorem in Laplace space

W +
x0

(s) = 1 − ψ+
x0

(s)

s
. (31)

Hence we may rewrite Eq. (28)

fx0,s(u) = W +
x0

(s + u) + [
1 − (s + u)W +

x0
(s + u)

]
×

[
ψ−(s)

1 − ψ+(s + u)

s + u
+ 1 − ψ−(s)

s

]
1

1 − ψ+(s + u)ψ−(s)
. (32)

Notice that fx0,s(u) depends on x0 only through the survival probability W +
x0

(s + u).
If we apply the backward Fokker–Planck operator

Dα

[
∂2

∂x2
0

+ F (x0)

kB T

∂

∂x0

]

on this equation and use Eq. (26), namely we assume that the underlying dynamics
is described by the FFPE in the continuum limit, we obtain at once our main result
Eq. (25). Similar method is used for the case x0 < 0 to complete the proof.

We now derive our main Eq. (8) using the continuum approximation. We
consider the case when the particle starts on x0 = 0 hence we have ψ+

x0
= ψ+ and
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define

Gs(u) = fx0=0,s(u). (33)

Generally Gs(u) is not identical to Gs(u) and our aim now is to find the conditions
when these two functions are identical. Using (28) we have

Gs(u) =
[

1 − ψ+(s + u)

(s + u)
+ ψ+(s + u)

1 − ψ−(s)

s

]
1

1 − ψ+(s + u)ψ−(s)
.

(34)

In the continuum limit we have the following ε expansion

ψ−
ε (s) 
 ψ−

ε=0(s) − ∂ψ−
ε

∂x
|ε=0ε + · · · (35)

and a similar expansion holds for ψ+
ε (s). Where the subscript ε in Eq. (35) is

added to emphasize that the PDF of the first passage time from lattice point −ε to
the origin 0. Note that ψ−

ε=0(s) = 1, since the particle on the origin is immediately
absorbed. Inserting the expansion (35) in Eq. (34) and using a similar expansion
for ψ+

ε (s + u) we find that when ε → 0

Gs(u) ∼
1

(s+u)
∂ψ+(s+u)

∂x0
|x0=0 − 1

s
∂ψ−(s)

∂x0
|x0=0

∂ψ+(s+u)
∂x0

|x0=0 − ∂ψ−(s)
∂x0

|x0=0

(36)

Using Eqs. (31, 36) we obtain our main result Eq. (8) and Gs(u) is identical to
Gs(u) in the continuum limit of ε → 0.

4. EXAMPLES

4.1. Weak Ergodicity Breaking

We now consider the anomalous dynamics in a binding potential field U (x),
e.g. U (x) = kx2/2 with k > 0, and F(x) = −dU (x)/dx . As we showed already
the long time behavior of Gt (T +), for normal diffusion, yields an ergodic behavior
Eq. (15). Residence time statistics for sub-diffusion in a binding potential field was
considered previously in Ref. 22, using the continuous time random walk model on
a lattice. Here we consider a fractional Fokker–Planck equation approach showing
that concepts of weak ergodicity breaking in Ref. 22 are valid also within the
fractional framework.

In Ref. 41 it was shown that the random walks in a binding field are recurrent
for α < 1, just like the normal case α = 1. Using the subordination trick (see
Appendix), or analyzing Eq. (26) we find that for s → 0

W ±
x0

(s) ∼
(
τ±

x0

)α

s1−α
. (37)



896 Barkai

When α = 1 we have
(
τ±

x0

)α = 〈t±
x0

〉 and the behavior in Eq. (12). For 0 < α < 1
we have in the time domain W ±

x0
(t) ∝ t−α , reflecting the long tailed trapping times

of the underlying CTRW. The
(
τ±

x0

)α
are amplitudes which satisfy

Dα

[
∂2

∂x0
2

+ F(x0)

kB T

∂

∂x0

] (
τ±

x0

)α = −1. (38)

This equation is obtained from the small s expansion of Eq. (26). Using Eq. (37)
and Eq. (8) we find in the limit of small s and u

Gs(u) ∼ R(s + u)α−1 + sα−1

R(s + u)α + sα
(39)

where the asymmetry parameter is

R = −
∂(τ+)α

∂x0
|x0=0+

∂(τ−)α

∂x0
|x0=0−

. (40)

Inverting to the time domain, we see that the PDF of T + in the long time t limit
is described by Lamperti’s limit theorem(6)

Gt

(
T +) ∼ 1

t
δα

(
R,

T +

t

)
, (41)

where the scaling function is

δα (R, p) ≡ sin πα

π

Rpα−1 (1 − p)α−1

R2 (1 − p)2α + p2α + 2R (1 − p)α pα cos πα
. (42)

This function is normalized according to
∫ 1

0 δα (R, p) dp = 1. When α = 1 we
find the ergodic behavior in Eq. (15), while clearly if α < 1 we find a non-ergodic
behavior. The parameter R is called the asymmetry parameter. It can be calculated
solving Eq. (38), we find

∂
(
τ+

x0

)α

∂x0
|x0=0+ = 1

Dα

∫ ∞

0
e−[U (x ′)−U (0)]/kb T dx ′, (43)

∂
(
τ−

x0

)α

∂x0
|x0=0− = − 1

Dα

∫ 0

−∞
e−[U (x ′)−U (0)]/kb T dx ′. (44)

Using Eqs. (40, 43, 44) we find

R = P+
B

1 − P+
B

, (45)

where P+
B is Boltzmann’s probability for finding the particle in the domain x > 0

Eq. (16). Eqs. (41, 45) were found previously in Ref. 22 using a different approach.
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One can show that the average occupation time is

〈T +〉 ∼ P+
B t (46)

and fluctuation are very large if α < 1

〈T + 2〉 − 〈T +〉2 ∼ (1 − α) P+
B

(
1 − P+

B

)
t2. (47)

We introduce a measure for ergodicity breaking the EB parameter

EB = 〈T + 2〉 − 〈T +〉2

〈T +〉2
∼ (1 − α)

1 − P+
B

P+
B

, (48)

which is zero in the ergodic phase α = 1.

4.2. Diffusion in an Interval

We consider the case where the particle is free to diffuse in an interval of
total length L+ + L−. The particle is Initially on the origin x = 0 and reflecting
boundary conditions are on x = L+ and x = −L−. Statistical properties of T +

the time spent in (0, L+) are now investigated.
The survival probability can be calculated using Eq. (26)

W +
x0

(s) =
1 − cosh

[√
sα
Dα

(L+−x0)
]

cosh
(√

sα
Dα

L+
)

s
, (49)

and when α = 1 we recover a text book result.(2) Using Eq. (8) we find

Gs(u) =
(s + u)α/2−1 tanh

[
(s+u)α/2 L+√

Dα

]
+ sα/2−1 tanh

(
sα/2 L−√

Dα

)
(s + u)α/2 tanh

[
(s+u)α/2 L+√

Dα

]
+ sα/2 tanh

(
sα/2 L−√

Dα

) . (50)

For free boundary conditions, namely in the limit where the system size is
infinite L+ → ∞ and L− → ∞ we find

Gs(u) = (s + u)α/2−1 + sα/2−1

(s + u)α/2 + sα/2
. (51)

Inverting to the time domain, the PDF of T + is the symmetric Lamperti PDF with
index α/2

Gt

(
T +) = 1

t
δα/2

(
1,

T +

t

)
. (52)

When α = 1, i.e. the case of normal Gaussian diffusion, we recover the well
known arcsine distribution. As α is decreased we are more likely to find the
particle localized in x > 0 or x < 0 for a time of the order of the observation time.
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Indeed when α → 0 the PDF of T + is a combination of two delta functions with
T + = t (particle always on x > 0) or T + = 0 (particle always in x < 0).

A different behavior is found for finite L+ and L−, then using Eq. (50) we
find for short times

Gt

(
T +) ∼ 1

t
δα/2

(
1,

T +

t

)
t �

[
min(L+, L−)2

Dα

]1/α

. (53)

For these time scales the particle does not interact with the boundaries, and
Gt (T +) is the symmetric Lamperti PDF with index α/2. In the long time limit,
corresponding to small s u limit we find using Eq. (50)

Gs(u) ∼ (s + u)α−1 L+ + sα−1L−

(s + u)α L+ + sα L− (54)

and hence when t → ∞

Gt

(
T +) ∼ 1

t
δα

(
L+

L− ,
T +

t

)
. (55)

This is in agreement with our more general result Eqs. (41, 45) namely for the
case of free diffusion P+

B = L+/(L+ + L−) and hence R = L+/L−. If L+ �= L−

the PDF of T + is as expected non-symmetric, reflecting the tendency of the
particle to reside in the larger interval [say (0, L+) if L+ > L−] for longer times
compared with the shorter domain. For long times an equilibrium is obtained:
for α = 1 an ergodic phase is found where T +/t = L+/(L− + L+) while for
α < 1 weak ergodicity breaking is found. We see that the statistics of occupation
times exhibits a transition from a symmetric Lamperti PDF with index α/2 when
diffusion is dominating the dynamics, i.e. for short times, to a generally non-
symmetric Lamperti PDF with index α, for long times when the particle interacts
with the boundaries. Such a transition is not limited to free diffusion as we show
later.

If L− → ∞ while L+ remains finite a different behavior is found. Now the
particle can be found either in a domain of finite length 0 < x < L+ or in the
infinite domain −∞ < x < 0. Statistically we expect of-course that the particle
will reside more in x < 0, though the random walk is recurrent hence, after each
sojourn time in x < 0 the particle is ejected back to x > 0, provided that we wait
long enough. However the average return time from a point in x < 0 to some point
in x > 0 is infinite, and this means that simple scaling T + ∼ t does not not hold.
For this case we have

Gs(u) =
(s + u)α/2−1 tanh

[
(s+u)α/2 L+√

Dα

]
+ sα/2−1

(s + u)α/2 tanh
[

(s+u)α/2 L+√
Dα

]
+ sα/2

. (56)



Residence Time Statistics for Normal and Fractional Diffusion in a Force Field 899

To investigate deviations from simple scaling we consider moments of the random
variable T +, using the small u expansion of Eq. (56). The average occupation time
in 0 < x < L+ is

〈T +〉 = L−1
s→t

[
1

2s2

(
1 − e− 2sα/2 L+√

Dα

)]
, (57)

where L−1
s→t is the inverse Laplace transform. This expression is inverted using

one sided Lévy stable functions, recall

lα/2,2L+/
√

Dα,1(t) = L−1
s→t e

−2sα/2 L+/
√

Dα , (58)

and see Ref. 41 and reference therein for more mathematical details on this
function. The one sided stable cumulative distribution is

L
α/2, 2L+√

Dα
,1 (t) =

∫ t

0
l
α/2, 2L+√

Dα
,1 (t) dt, (59)

and hence

〈T +〉 = 1

2

∫ t

0

[
1 − L

α/2, 2L+√
Dα

,1 (t)
]

dt. (60)

For short times 〈T +〉 = t/2, since then the particle does not have time to interact
with the boundary, and it spends half of the time in x > 0. For long times

〈T +〉 ∼ L+
√

Dα

t1−α/2

� (2 − α/2)
. (61)

We see that as the process becomes slower, namely when α is decreased, the particle
tends to stay more in 0 < x < L+ i.e. 〈T +〉 ∝ t for α = 0 but 〈T +〉 ∝ t1/2 if α = 1.
We explain this result for normal diffusion α = 1 by thinking about the process
as a two state process, i.e. the particle is either in x < 0 or in x > 0. Sojourn
times in x > 0 are finite, since the interval 0 < x < L+ is finite. The PDF of
times in state x < 0 follow the t−3/2 power law tail due to usual diffusion. The
number of time the particle will cross zero is 〈n(t)〉 ∼ t1/2 at-least for a lattice
CTRW process (in the continuum limit this question is not well defined). Hence
we expect 〈T +〉 = 〈n(t)〉 ∗ average time in 0 < x < L+ ∼ t1/2 as we find. If α <

1 we expect 〈n(t)〉 ∼ tα/2 and the average time is 0 < x < L+ is proportional
to

∫ t
ψ(t)tdt 
 ∫ t t−(1+α)tdt 
 t1−α , hence we get 〈T +〉 ∝ t1−α/2. The second

moment of T + is

〈T + 2〉 ∼ 4 (1 − α)
L+

√
Dα

t2−α/2

� (3 − α/2)
. (62)

Note that we do not have simple scaling and 〈T + 2〉 ∝ t2−α/2 is not proportional
to 〈T +〉2 ∝ t2−α , and hence the PDF of T + does not have a simple scaling.
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4.3. Diffusion with Drift

We consider anomalous diffusion in the presence of a constant driving
force F > 0, for an infinite system. The biased diffusion yields a net drift
〈x〉 = Dα Ftα/[kbT �(1 + α)]. Since F > 0 the particle will escape to infinity,
hence for a particle starting on x = 0 we expect T + ∼ t when t is large.

The survival probability in the right half space

W +
x0

(s) =
1 − exp

[
− Fβ+(s)x0

2kb T

]
s

, (63)

when x0 > 0. To obtain the survival probability for left random walks replace
β+(s) in Eq. (63) with β−(s), and

β±(s) = 1 ± √
1 + 4sατα (64)

where

τα = (kbT )2

F2 Dα

. (65)

Using Eq. (9)

Gs(u) =
β+(s+u)

(s+u) − β−(s)
s

β+(s + u) − β−(s)
. (66)

For sατα � 1 and uατα � 1

Gs(u) 
 (s + u)α/2−1 + sα/2−1

(s + u)α/2 + sα/2
. (67)

Thus for short times t � τ

Gt (T
+) 
 1

t
δα/2

(
1,

T +

t

)
(68)

namely a symmetric Lamperti PDF with index α/2 describes the residence times.
Such behavior is independent of the drift and can be understood if we notice
that for short times the dynamics is governed by diffusion not drift. To see this
recall that the scaling of these two processes is x ∼ tα/2 (diffusion) and x ∼ tα

(drift) and hence for short times diffusion wins. For long times we use the small
s, u expansion of Eq. (66), Gs(u) ∼ 1/(s + u) which gives the expected behavior
Gt (T +) ∼ δ(T + − t).

The mean occupation time is

〈T +〉 = L−1
s→t

{
1

2s2

1 + √
1 + 4sατα

√
1 + 4sατα

}
. (69)
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For the case of normal diffusion α = 1 we find

〈T +〉 = t

2
+ τ

[√
t

πτ
e− t

4τ +
(

t

2τ
− 1

)
Erf

√
t

4τ

]
. (70)

The long time behavior is

〈T +〉 ∼ t − τ

(
1 −

√
4τ

π t
e− t

4τ

)
, (71)

the leading term 〈T +〉 ∼ t is expected since as mentioned for long times the
particle is always in x > 0 when F > 0. For short times

〈T +〉 ∼ t

2

[
1 + 2

3
√

π

(
t

τ

)1/2

− 1

30
√

π

(
t

τ

)3/2

+ O(t5/2)

]
. (72)

The leading term 〈T +〉 ∼ t
2 shows that at short time diffusion not drift is domi-

nating the process, hence from symmetry half of the time the particle is on x > 0.
For the sub-diffusive case α < 1 we investigate the long time behavior of 〈T +〉
using the small s expansion of (69) and then inverting to the time domain

〈T +〉 ∼ t

[
1 − 1

� (2 − α)

(kbT )2

F2 Dαtα
+ O

(τ

t

)2α
]

. (73)

At short times we use Eq. (69) and Hankel’s contour integral, for the �(z) function,
and find

〈T +〉 ∼ t

2

[
1 + 1

2� (2 + α/2)

F
√

Dα

kbT
tα/2 + · · ·

]
. (74)

We note that results for the case F < 0 can be easily obtained from our results
for F > 0. The distribution of times T − in x < 0 when F > 0 is equal of-course
to the distribution of time T + in x > 0 when F < 0. Also T + + T − = t hence a
simple shift of the random variable yields T − = t − T +, and hence also statistics
for the case F < 0.

4.4. Diffusion in an Unstable Force Field

We consider a particle in an unstable force field

F(x) =
{

F+ x > 0
−F− x < 0

(75)

where F+ > 0 and F− > 0. For this case the particle will eventually escape either
to +∞ or −∞, and the random walk is not recurrent. The survival probabilities
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in left and right domains are

W ±
x0

(s) = 1

s

{
1 − exp

[
∓F±

(
1 + √

1 + 4sατα±
)

x0/ (2kbT )
]}

, (76)

where

τα
± = (kbT )2

F2± Dα

. (77)

Using Eq. (8) we find

Gs(u) =
γ+(s+u)

s+u + γ−(s)
s

γ+ (s + u) + γ− (s)
(78)

with

γ±(s) = F±
(

1 + √
1 + 4sατα±

)
. (79)

Using the definition Eq. (10), the small s behavior of Eq. (76) gives the
survival probabilities in the + and − domains, x > 0 and x < 0 respectively. In
the limit of long times

ε±(x0) = 1 − exp

(
∓ F±x0

kbT

)
, (80)

where x0 > 0 for + and x0 < 0 for −. Hence according to the rather general Eqs.
(17, 18) we find

Gt (T
+) ∼ F+

F− + F+
δ
(
T + − t

) + F−
F+ + F−

δ(T +). (81)

This long time behavior exhibits the same behavior for the normal diffusion α = 1
as for the anomalous case α < 1. Note that Eqs. (17, 18) where derived for normal
diffusion however one can show that they are valid also for the anomalous diffusion
case. To see this use the small s, u expansion of Eq. (78) which gives

Gs(u) ∼ 1

F+ + F−

(
F+

s + u
+ F−

s

)
, (82)

which is the double inverse Laplace transform of Eq. (81) and is independent of
the parameters α, Dα and T .

For short times t � min (τ−, τ+) we use the large s, u behavior of Eq. (78) and

find Gt (T +) 
 1
t δα/2

(
1, T +

t

)
. Thus for short times the PDF of T + is the symmetric

Lamperti PDF which is independent of all the parameters of the problem except
for α. At the early stages of the dynamics the diffusion process not the drift is the
most important, and hence forces are not relevant.



Residence Time Statistics for Normal and Fractional Diffusion in a Force Field 903

4.5. Diffusion in Binding Force Field

We consider a particle in a stable force field

F(x) =
{−F+ x > 0

F− x < 0
(83)

where F+ > 0 and F− > 0. The random walk is recurrent. Using an approach
similar to one used in previous subsection

Gs(u) =
ξ+(s+u)

s+u + ξ−(s)
s

ξ+ (s + u) + ξ− (s)
, (84)

and ξ± (s) = F±
(
1 − √

1 + 4sατα±
)
.

For small s, u we have

Gs(u) ∼
(s + u)α−1 F−

F+
+ sα−1

(s + u)α F−
F+

+ sα
, (85)

and hence when t is large

Gt

(
t+) ∼ 1

t
δα

(
F−
F+

,
T +

t

)
. (86)

This is in agreement with our more general results Eqs. (41, 45). For short times

we have Gt (T +) 
 1
t δα/2

(
1, T +

t

)
which is similar to the behavior of the unstable

field discussed in previous sub-section.

5. DISCUSSION

Statistics of occupation times for binding external fields exhibits in the limit
of long times an ergodic behavior when the diffusion is normal, or weak ergodicity
breaking Eqs. (41, 45) when diffusion is anomalous. We established a link between
weak ergodicity breaking and fractional calculus. The exponent α in the fractional
derivative ∂α/∂tα enters in Eq. (41) describing the non-ergodic properties of the
residence times. Since many processes and systems are modeled today using the
fractional calculus approach, it is not out of the question that weak ergodicity
breaking has many applications, and is wide spread. We can say that at-least one
must treat with care, results obtained using fractional kinetic equations, since they
describe only ensemble averages, not time averages.

For binding external fields our results are in full agreement with those de-
rived recently, by Bel and the author.(22) There a continuous time random walk
process was considered. Technically the methods used to treat the two prob-
lems are different. For the fractional framework, a differential equation, Eq. (25)
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for the occupation times is derived and solved, which yields the weakly non
ergodic properties of the system, while for the CTRW certain recursive rela-
tions must be solved.(23) Our work shows how the fractional framework, which
is the continuum limit of the CTRW (and in this sense simpler) can be used
to obtain statistics of residence times, and for binding fields weak ergodicity
breaking.

We found a general relation between the problem of occupation times and the
problem of first passage times, Eq. (8). Mathematically the problem of first passage
time is described in terms of a differential equation whose solution depends on a
single time t as a parameter, while the equation for residence time depends on two
times T + and t , hence the approach based on calculation of first passage times
instead of a direct calculation of distribution of residence times seems to us useful.
Besides, statistics of first passage times in external fields is a well investigated
problem and this knowledge was used here. We showed that from Eq. (8) general
properties of residence times can be easily derived. Interestingly the relation Eq.
(8) is valid for the non-Markovian sub-diffusive fractional framework and for
the standard normal processes, and hence has some general validity. From our
derivation of this relation, we see that a key ingredient for this relation to be valid
is the renewal property of the underlying random walk. As far as we know statistics
of residence times for more general non-Markovian and non renewal dynamics
was not investigated so far.(54)

As mentioned, for binding fields we confirm old results in the limit of long
measurement times. New results for non-binding force fields and also for non
asymptotic times are also found. For example, for the simplest case of anomalous
diffusion in free space, we found that the PDF of occupation times in half space is a
symmetric Lamperti PDF with index α/2. This is the natural generalization of the
well known arcsine law. Hence we showed that the fractional kinetic framework is
indeed a natural generalization of the ordinary diffusion process.

Other behaviors are found when diffusion is not free. For example for short
times we expect rather generally that occupation times statistics is described by
a symmetric Lamperti PDF, since for short times drift by force fields is a slow
process if compared with the diffusion process. For long times we get either (i)
weak ergodicity breaking if the force field is binding and α < 1 (ergodicity when
α = 1), or (ii) occupation times described by Eq. (17) if both the left and the
right random walks are not recurrent (note that this equation is also valid for
anomalous sub diffusion), or (iii) when the random walk in the left and the right
domains are not bounded and recurrent, in such a way that the average first return
time is infinite, then a generally non-symmetric Lamperti PDF describes statistics
of occupation times in the limit of long times. For normal diffusion process the
asymmetry parameter is determined by Eq. (20). We also analyzed other cases
where the left random walk is recurrent but not bounded and the right random
walk is bounded, showing deviations from simple scaling.
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APPENDIX A

The Fokker–Planck equation for a particle in a force field reads

∂c(x, t)

∂t
= D1LFPc(x, t) (87)

with the operator

LFP = ∂2

∂x2
− ∂

∂x

F(x)

kB T
, (88)

where D1 is the diffusion coefficient. To prepare for the FFPE we rewrite Eq. (87)
in an integral form

c(x, t) − δ(x − x0) = D1 0 I 1
t LFPc(x, t) (89)

where δ(x − x0) are the initial conditions. According to the fractional kinetic
approach, we must replace the integral 0 I 1

t with a fractional Riemann–Liouville
integration, defined as an operation on a function Z (t) according to

0 I α
t Z (t) ≡ 1

�(α)

∫ t

0

Z (t ′)
(t − t ′)1−α

dt ′, (90)

and for our purpose 0 < α < 1. The FFPE in its integral form is

c(x, t) − δ(x − x0) = Dα 0 I α
t LFPc(x, t) (91)

where Dα is a generalized diffusion coefficient. Several authors present this equa-
tion in different ways. Sometimes(20) further differentiation with respect to time is
made in Eq. (91) to return to a fractional differential equation instead of the frac-
tional integral form. However, following work of Gorenflo and Mainardi(40) there
is now growing use of Caputo symbols which are more elegant. Such symbols are
used in Eq. (24) which has the same meaning as Eq. (91). Later we use the Laplace
t → s transform of the FFPE equation (91)

sc(x, s) − δ(x − x0) = Dαs1−α LFPc(x, s). (92)

We see that the solution of the FFPE with α < 1 is related to the solution of the
Fokker–Planck equation when α = 1 in Laplace space. To obtain the solution of
the FFPE from the solution of the usual Fokker–Planck equation we must make
a replacement D1 → Dαs1−α .(20) This similarity transformation in s space can be
inverted to real time,[(41)] and with it one can obtain a solution of the FFPE once
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the corresponding solution of the usual Fokker–Planck equation is known. This
transformation is related to subordination and the inverse Lévy transform.[(41)]

Similarly the survival probability for the normal diffusion case, and the
fractional case are related to each other, by a simple transformation in Laplace
space.[(41)] According to Eq. (57) in Ref. 41

W +
α,x0

(s) = D1

Dα

sα−1W +
1,x0

(
D1

Dα

sα

)
, (93)

where W +
α,x0

(s) is the survival probability for the fractional α < 1 or the normal
case α = 1. Using Eqs. (6, 93) it is easy to prove the validity of Eq. (26).
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